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1. p-Groups

Definition 1. Let p be a prime integer. A p-group is a group such that the order
of every element is a power of p.

Proposition 1. Let G be a finite group and let p be a prime integer. Then G is a
p-group if and only if |G| = pn for some n ∈ N.

Proof.
(⇒) Suppose that |G| is not a power of p. Then q||G| for some prime q 6= p.

Then by Cauchy’s Theorem, G has an element of order q. Thus G is not a p-group.
(⇐) Suppose that |G| = pn and let g ∈ G. Then by Lagrange’s Theorem, the

order of g divides pn. Since p is prime, ord(G) = pm for some m ≤ n. �

Proposition 2. Let G be a finite p-group. Then G has a nontrivial center.

Proof. We know that |G| = pn for some n ∈ N.
Let G act on itself by conjugation. Then G is partitioned into disjoint orbits,

and the order of G is the sum of the cardinalities of these orbits. The set of fixed
points of this action is the center of G, so the order of G is equal to the order of
Z(G) plus the sum of the cardinalities of the nonsingleton orbits.

For g ∈ G, the stabilizer of g is CG(g). There is a correspondence between the
points in orb(g) = gG and the cosets of stb(g) = CG(g) in G. This gives us the
class equation

|G| = |Z(G)|+
∑

[G : CG(g)],

where the sum is taken over a set of representatives of the conjugacy classes of the
noncentral elements of G.

Now p divides |G| and p divides [G : CG(g)] for each g ∈ G; thus p divides
|Z(G)|, and Z(G) is nontrivial. �
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2. Lifting

Proposition 3. Let φ : G→ H be a group epimorphism with kernel K. Let L ≤ H.
Suppose that K has order n and L has order m. Then φ−1(L) is a subgroup of G
containing K of order mn. We call this subgroup the lift of L.

Proof. Let M = φ−1(L). That M is closed under multiplication and inverses is
immediate from the fact that φ is a homomorphism, as is the fact that M contains
K. So |M | = |K|[M : K]. But since M/K ∼= L, [M : K] = |L|. �

Definition 2. Let p ∈ N be a prime integer. A Sylow p-subgroup of a group G is
a maximal p-subgroup of G.

Lemma 1. Let G be a group of order pr where p is prime. Then for s ∈ N,
0 ≤ s ≤ r, G contains a subgroup of order ps.

Proof. Let s = r− 1 It suffices to show that G contains a subgroup of order ps, for
then it will have a subgroup of order ps−1 and so forth.

Since G has a nontrivial center, let g be a central element of order p and let
H = 〈g〉. Then G/H is a group of order ps and by induction has a subgroup of
order ps−1. Lifting this subgroup back to G yields a subgroup in G of order ps. �
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3. Sylow’s Theorem

Theorem 1. Let G be a finite group of order prm where p,m, r ∈ N, p is prime,
and pr is the maximum power of p which divides G. Then

(1) for any s ∈ N, 0 ≤ s ≤ r, G contains a subgroup of order ps;
(2) the p-Sylow subgroups of G are conjugate;
(3) the number of p-Sylows is congruent to 1 modulo p;
(4) the number of p-Sylows divides m.

Proof. By the lemma, to prove (1) it suffices to show that G contains a subgroup
of order pr.

Suppose that G has a nontrivial subgroup H whose index in G is relatively prime
to p. Then pr divides the order of H and by induction, H contains a subgroup of
order pr.

Thus we assume that for every subgroup H of G we have p|[G : H]. Let G act
on itself by conjugation. Then

|G| = |Z(G)|+
∑

[G : CG(g)],

and p must divide the order of Z(G). Now let g be a central element of order p
whose existence is guaranteed by Cauchy’s Theorem. Let H = 〈g〉. Then pr−1

divides the order of G/H, so by induction, G/H has a subgroup of order pr−1.
Lifting this subgroup back to G yields (1).

To prove (2) and (3), let P be a p-Sylow subgroup of G whose existence is
guaranteed by (1).

First we claim that the only p-Sylow which normalizes P is P itself. Let Q be
another p-Sylow subgroup of G and suppose that Q ≤ NG(P ). Then P / QP and
since QP/P ∼= Q/(Q ∩ P ), we have that

|QP ||Q ∩ P | = |P ||Q|.
Thus QP is a p-group, and by maximality we must have Q = P .

Next we show that the number of p-Sylows conjugate to a given p-Sylow is not
divisible by p. Let S be the set of p-Sylow subgroups of G which are conjugate to P .
Note that G acts transitively on S by conjugation. Since NG(P ) is the stabilizer of
P under this action, we have [G : NG(P )] = |S|. But since P ≤ NG(P ), pr divides
NG(P ) and so p does not divide [G : NG(P )], that is, p does not divide |S|.

Now let Q be another p-Sylow subgroup of G and let Q act on S by conjugation.
Then |S| is equal to the number of fixed points of this action plus the sum of the
sizes of the orbits of the nonfixed points. The stabilizer of this action on R ∈ S is
NQ(R); thus these orbits have cardinality [Q : NQ(R)]. But |Q| = pr so p divides
[Q : NQ(R)] if R is not fixed, that is, unless Q normalizes R. Thus p divides the
sum of the sizes of the orbits of the nonfixed points, and since p does not divide
|S|, some point must be fixed.

However, the only p-Sylow fixed by the action of Q is Q itself. Thus Q ∈ S,
proving (2). That Q is the only fixed point proves (3).

To prove (4), note that S is the set of p-Sylow subgroups of G by (2). Then
|S| = [G : NG(P )] divides |G| = prm; since p does not divide [G : NG(P )], then
[G : NG(P )] divides m. This proves (4). �
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4. An Application of Sylow Theorem

We will show that all groups of order < 60 are solvable.
First note that this is equivalent to showing that there are no nonabelian simple

groups of order < 60.
Suppose that there are no non-abelian, simple groups of order < 60. If the order

of G is less than 60, then it is either abelian and hence solvable, or has a normal
subgroup H. Then by induction, both G/H and H are solvable, so G is solvable.

On the other hand, suppose that all groups of order < 60 are solvable. Then
each one has a normal series with abelian factors. If it is simple, it must be abelian.

We proceed with a sequence of lemmas. If p is a prime which divides the order
of a group, let sp denote the number of p-Sylows in that group.

Lemma 2. If p is a prime, then a group of order p is cyclic, and thence abelian.

Lemma 3. If p is a prime, then a group of order p2 is abelian.

Proof. Since G is a p-group, it has a nontrivial center. Then G = G/Z(G) has order
either p or 1. Suppose |G| = p. Then G is cyclic. Let g generate G. Let a, b ∈ G.
Let a = gm, b = gn. That is, a = gmz1 and b = gnz2 for some z1, z2 ∈ Z(G). Then
[a, b] = [gm, gn] = 1.

This actually shows that any group of the form central by cyclic is abelian. �

Lemma 4. Every p-group is solvable.

Lemma 5. If p and q are two primes then a group of order pq cannot be simple.

Proof. Let sp be the number of Sylow p-subgroups of a group G. By Sylow’s
Theorem, sp ∼= 1(p) and sp||G|.

If |G| = pq, then by the second condition, sp = 1 or q and sq = 1 or p. Suppose
that sp = q and sq = p. Then q ∼= 1(p) and p ∼= 1(q). This says that q = kp+ 1 and
p = lq + 1, where k and l are positive. Thus q = klq + k+ 1 and q(1− kl) = k+ 1.
The left side must be positive, so kl = 0. Thus either k or l is zero, a contradiction.

Therefore, either sp = 1 or sq = 1. A unique Sylow subgroup is normal, so G is
not simple. �

Lemma 6. If p and q are two primes then a group of order p2q cannot be simple.

Proof. Let G be a group of order p2q.
If p = q, then G is a p-group and has a nontrivial center, so G is nonsimple.
Next assume that p > q. Since sp|q, sp = 1 or sp = q. Suppose that sp = q.

Then sp ∼= 1(p), so p|sp − 1. Thus p ≤ sp − 1 < sp = q; but p > q, a contradiction.
Thus sp = 1 and the p-Sylow is normal.

Now assume that q > p. Since sq|p2, either sq = 1, sq = p, or sq = p2. If sq = 1,
we are done. Suppose sq = p. Then sq ∼= 1(q), so q|sq−1. Thus q ≤ sq−1 < sq = p;
but q > p, a contradiction. Thus sp 6= q.

Suppose that sq = p2. Then q|p2 − 1, so q|p + 1 or q|p − 1. By the preceeding
argument, we cannot have q|p− 1. Thus q|p+ 1. Since q > p, q = p+ 1. The only
primes for which this is true are p = 2 and q = 3.

In this case, G has order 12 and s3 = 4, so G contains 8 distinct elements of
order 3. The other four elements of G must be a unique 2-Sylow; hence, G is
nonsimple. �
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Lemma 7. Let p be prime where p > m > 1. A group of order pnm cannot be
simple.

Proof. Since sp|m, sp = 1 or sp|m. Suppose that sp|m. Then sp ≤ m. Then
sp ∼= 1(p), so p|sp − 1. Thus p ≤ sp − 1 < sp ≤ m; but p > m, a contradiction.
Thus sp = 1 and the p-Sylow is normal. �

Lemma 8. Let q be prime. A group of order 2qn cannot be simple.

Proof. If q = 2, then the group is a p-group. Otherwise, the q-Sylow has index 2
and is normal. �

Lemma 9. Let q be prime. A group of order 3qn cannot be simple.

Proof. If q = 3, then the group is a p-group. Assume that q 6= 3.
Let G be a group of order 3qn and let H be a Sylow q-subgroup of G. Let

X = G/H be the left coset space of H in G. Then |X| = 3. Since G acts on X by
left multiplication, we have a homomorphism G 7→ S3.

Suppose that G is simple. Then this map in injective, so G is a subgroup of S3.
Since the order of G is 3qn, then q = 2, n = 1, and G ∼= S3. But S3 is nonsimple,
a contradiction. �

Lemma 10. Let q be prime. A group of order 4qn cannot be simple.

Proof. If q = 2, then the group is a p− group. Assume that q 6= 2.
Let G be a group of order 4qn and let H be a Sylow q-subgroup of G. Let

X = G/H be the left coset space of H in G. Then |X| = 4. Since G acts on X by
left multiplication, we have a homomorphism G 7→ S4.

Suppose that G is simple. Then this map in injective, so G is a subgroup of S4,
and the order of G divides 24. Since the order of G is 4qn, then q = 3, n = 1 and
G has order 12. Then G is a p2q group and is nonsimple, a contradiction. �

Lemma 11. A group of order 30 is not simple.

Proof. Let G be a group of order 30. We have that 30 = 2 · 3 · 5.
Suppose that G has no normal Sylow subgroups. Then s2 ≥ 3, s3 ≥ 4, and

s5 ≥ 6. This gives us 3 elements of order 2, 8 elements of order 3, and 25 elements
of order 5 for a total of at least 36 elements, a contradiction. �

Lemma 12. A group of order 40 is not simple.

Proof. Let G be a group of order 40. We have that 40 = 28 · 5.
Now s5|8 so s5 ∈ {1, 2, 4, 8}. Also s5 ∼= 1(5) so s5 ∈ {1, 6, 11, . . . }. This only

possibility is s5 = 1, so the 5-Sylow is normal. �
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Lemma 13. A group of order 56 is not simple.

Proof. Let G be a group of order 56 = 23 · 7.
Now s7|8 so s7 ∈ {1, 2, 4, 8}. Also s7 ∼= 1(7) so s7 ∈ {1, 8, . . . }. Then either

s7 = 1, in which case the 7-Sylow is normal, or s7 = 8.
Suppose that s7 = 8. Then G contains 48 elements of order 7. The other 8

elements in G must form a unique 2-Sylow, which is normal. �

Order Type Order Type Order Type
1 TRIV 21 pq 41 p
2 p 22 pq 42 pm
3 p 23 p 43 p
4 p2 24 3q3 44 p2q
5 p 25 p2 45 p2q
6 pq 26 pq 46 pq
7 p 27 p3 47 p
8 p3 28 p2q 48 3q4

9 p2 29 p 49 p2

10 pq 30 pqr (*) 50 p2q
11 p 31 p 51 p
12 p2q 32 p5 52 p2q
13 p 33 pq 53 p
14 pq 34 pq 54 p3m
15 pq 35 pq 55 pq
16 p4 36 4q2 56 p3q (*)
17 p 37 p 57 p
18 p2q 38 pq 58 pq
19 p 39 p 59 p
20 p2q 40 p3q (*) 60 SIMP
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