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SYLOW’S THEOREM
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1. p-GROUPS

Definition 1. Let p be a prime integer. A p-group is a group such that the order
of every element is a power of p.

Proposition 1. Let G be a finite group and let p be a prime integer. Then G is a
p-group if and only if |G| = p™ for some n € N.

Proof.
(=) Suppose that |G| is not a power of p. Then ¢||G| for some prime g # p.
Then by Cauchy’s Theorem, G has an element of order q. Thus G is not a p-group.
(<) Suppose that |G| = p™ and let g € G. Then by Lagrange’s Theorem, the
order of g divides p™. Since p is prime, ord(G) = p™ for some m < n. O

Proposition 2. Let G be a finite p-group. Then G has a nontrivial center.

Proof. We know that |G| = p™ for some n € N.

Let G act on itself by conjugation. Then G is partitioned into disjoint orbits,
and the order of G is the sum of the cardinalities of these orbits. The set of fixed
points of this action is the center of G, so the order of G is equal to the order of
Z(@G) plus the sum of the cardinalities of the nonsingleton orbits.

For g € G, the stabilizer of g is Cg(g). There is a correspondence between the
points in orb(g) = ¢g“ and the cosets of sth(g) = Cg(g) in G. This gives us the
class equation

G| =12(@)| +)_[G: Calg)],
where the sum is taken over a set of representatives of the conjugacy classes of the
noncentral elements of G.

Now p divides |G| and p divides [G : Cg(g)] for each g € G; thus p divides

|Z(G)|, and Z(G) is nontrivial. O
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2. LIFTING

Proposition 3. Let ¢ : G — H be a group epimorphism with kernel K. Let L < H.
Suppose that K has order n and L has order m. Then ¢~1(L) is a subgroup of G
containing K of order mn. We call this subgroup the lift of L.

Proof. Let M = ¢~(L). That M is closed under multiplication and inverses is
immediate from the fact that ¢ is a homomorphism, as is the fact that M contains
K. So |M| = |K|[M : K]. But since M/K = L, [M : K| = |L|. O

Definition 2. Let p € N be a prime integer. A Sylow p-subgroup of a group G is
a maximal p-subgroup of G.

Lemma 1. Let G be a group of order p" where p is prime. Then for s € N,
0 <s<r, G contains a subgroup of order p°.

Proof. Let s =r — 1 It suffices to show that G contains a subgroup of order p*, for
then it will have a subgroup of order p*~! and so forth.

Since G has a nontrivial center, let g be a central element of order p and let
H = (g9). Then G/H is a group of order p® and by induction has a subgroup of
order p*~1. Lifting this subgroup back to G yields a subgroup in G of order p*. [



3. SYLOw’S THEOREM

Theorem 1. Let G be a finite group of order p"m where p,m,r € N, p is prime,
and p" is the maximum power of p which divides G. Then

(1) for any s € N, 0 < s <r, G contains a subgroup of order p*;

(2) the p-Sylow subgroups of G are conjugate;

(3) the number of p-Sylows is congruent to 1 modulo p;

(4) the number of p-Sylows divides m.

Proof. By the lemma, to prove (1) it suffices to show that G contains a subgroup
of order p".

Suppose that G has a nontrivial subgroup H whose index in G is relatively prime
to p. Then p” divides the order of H and by induction, H contains a subgroup of
order p".

Thus we assume that for every subgroup H of G we have p|[G : H]. Let G act
on itself by conjugation. Then

Gl =12(G)|+ )G : Calg)],

and p must divide the order of Z(G). Now let g be a central element of order p
whose existence is guaranteed by Cauchy’s Theorem. Let H = (g). Then p"~!
divides the order of G/H, so by induction, G/H has a subgroup of order p"~!.
Lifting this subgroup back to G yields (1).

To prove (2) and (3), let P be a p-Sylow subgroup of G whose existence is
guaranteed by (1).

First we claim that the only p-Sylow which normalizes P is P itself. Let @ be
another p-Sylow subgroup of G and suppose that @ < Ng(P). Then P < QP and
since QP/P =2 Q/(Q N P), we have that

|QPIQNP| = [PllQ].
Thus QP is a p-group, and by maximality we must have Q) = P.

Next we show that the number of p-Sylows conjugate to a given p-Sylow is not
divisible by p. Let 8 be the set of p-Sylow subgroups of G which are conjugate to P.
Note that G acts transitively on 8 by conjugation. Since Ng(P) is the stabilizer of
P under this action, we have [G : Ng(P)] = |8]. But since P < Ng(P), p" divides
N¢(P) and so p does not divide [G : Ng(P)], that is, p does not divide |§|.

Now let @ be another p-Sylow subgroup of G and let () act on 8 by conjugation.
Then |8] is equal to the number of fixed points of this action plus the sum of the
sizes of the orbits of the nonfixed points. The stabilizer of this action on R € 8 is
Ng(R); thus these orbits have cardinality [@ : Ng(R)]. But |@Q| = p" so p divides
[@Q : Ng(R)] if R is not fixed, that is, unless @) normalizes R. Thus p divides the
sum of the sizes of the orbits of the nonfixed points, and since p does not divide
|8], some point must be fixed.

However, the only p-Sylow fixed by the action of @ is @ itself. Thus Q € 8,
proving (2). That @ is the only fixed point proves (3).

To prove (4), note that 8 is the set of p-Sylow subgroups of G by (2). Then
I8| = [G : Ng(P)] divides |G| = p™m; since p does not divide [G : Ng(P)], then
[G : Ng(P)] divides m. This proves (4). O



4. AN APPLICATION OF SYLOW THEOREM

We will show that all groups of order < 60 are solvable.

First note that this is equivalent to showing that there are no nonabelian simple
groups of order < 60.

Suppose that there are no non-abelian, simple groups of order < 60. If the order
of GG is less than 60, then it is either abelian and hence solvable, or has a normal
subgroup H. Then by induction, both G/H and H are solvable, so G is solvable.

On the other hand, suppose that all groups of order < 60 are solvable. Then
each one has a normal series with abelian factors. If it is simple, it must be abelian.

We proceed with a sequence of lemmas. If p is a prime which divides the order
of a group, let s, denote the number of p-Sylows in that group.

Lemma 2. If p is a prime, then a group of order p is cyclic, and thence abelian.
Lemma 3. If p is a prime, then a group of order p? is abelian.

Proof. Since G is a p-group, it has a nontrivial center. Then G = G//Z(G) has order
either p or 1. Suppose |G| = p. Then G is cyclic. Let g generate G. Let a,b € G.
Let @ = g™,b = g". That is, a = g™z, and b = g"z; for some z1, 29 € Z(G). Then
[a,0] = [¢g", g"] = 1.

This actually shows that any group of the form central by cyclic is abelian. [

Lemma 4. FEvery p-group is solvable.
Lemma 5. If p and q are two primes then a group of order pq cannot be simple.

Proof. Let s, be the number of Sylow p-subgroups of a group G. By Sylow’s
Theorem, s, = 1(p) and s,||G|.

If |G| = pq, then by the second condition, s, =1 or ¢ and s, = 1 or p. Suppose
that s, = ¢ and s, = p. Then ¢ = 1(p) and p = 1(g). This says that ¢ = kp+1 and
p =1g+ 1, where k and [ are positive. Thus ¢ = klg+k+ 1 and ¢(1 — kl) =k + 1.
The left side must be positive, so kIl = 0. Thus either k or [ is zero, a contradiction.

Therefore, either s, =1 or s, = 1. A unique Sylow subgroup is normal, so G is
not simple. O

Lemma 6. Ifp and q are two primes then a group of order p>q cannot be simple.

Proof. Let G be a group of order p?q.

If p = q, then G is a p-group and has a nontrivial center, so G is nonsimple.

Next assume that p > ¢. Since sp|g, s, = 1 or s, = ¢. Suppose that s, = g¢.
Then s, =2 1(p), so p|sp, — 1. Thus p < s, — 1 < s, = ¢; but p > ¢, a contradiction.
Thus s, = 1 and the p-Sylow is normal.

Now assume that ¢ > p. Since s,|p?, either s, = 1, s, = p, or 5, = p2. If 5, = 1,
we are done. Suppose s, = p. Then s, = 1(g), so ¢|sq—1. Thus ¢ < s4—1 < s, = p;
but ¢ > p, a contradiction. Thus s, # q.

Suppose that s, = p?. Then ¢|p? — 1, so g|p+ 1 or g|p — 1. By the preceeding
argument, we cannot have g|p — 1. Thus ¢|p + 1. Since ¢ > p, ¢ = p+ 1. The only
primes for which this is true are p = 2 and ¢ = 3.

In this case, G has order 12 and s3 = 4, so G contains 8 distinct elements of
order 3. The other four elements of G must be a unique 2-Sylow; hence, G is
nonsimple. O
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Lemma 7. Let p be prime where p > m > 1. A group of order p™m cannot be
simple.

Proof. Since sp|m, s, = 1 or s,/m. Suppose that s,/m. Then s, < m. Then
sp = 1(p), so p|sp — 1. Thus p < s, — 1 < 5, < m; but p > m, a contradiction.
Thus s, = 1 and the p-Sylow is normal. (|

Lemma 8. Let q be prime. A group of order 2¢™ cannot be simple.

Proof. If ¢ = 2, then the group is a p-group. Otherwise, the ¢g-Sylow has index 2
and is normal. (]

Lemma 9. Let q be prime. A group of order 3¢q™ cannot be simple.

Proof. If ¢ = 3, then the group is a p-group. Assume that g # 3.

Let G be a group of order 3¢™ and let H be a Sylow g-subgroup of G. Let
X = G/H be the left coset space of H in G. Then |X| = 3. Since G acts on X by
left multiplication, we have a homomorphism G — Ss.

Suppose that G is simple. Then this map in injective, so G is a subgroup of S3.
Since the order of G is 3¢™, then ¢ = 2, n =1, and G = S3. But S5 is nonsimple,
a contradiction. (]

Lemma 10. Let g be prime. A group of order 4q™ cannot be simple.

Proof. If ¢ =2, then the group is a p — group. Assume that ¢ # 2.

Let G be a group of order 4¢™ and let H be a Sylow g¢-subgroup of G. Let
X = G/H be the left coset space of H in G. Then |X| = 4. Since G acts on X by
left multiplication, we have a homomorphism G + Sjy.

Suppose that G is simple. Then this map in injective, so G is a subgroup of Sy,
and the order of G divides 24. Since the order of G is 4¢", then ¢ = 3, n = 1 and
G has order 12. Then G is a p?q group and is nonsimple, a contradiction. O

Lemma 11. A group of order 30 is not simple.

Proof. Let G be a group of order 30. We have that 30 =2-3-5.

Suppose that G has no normal Sylow subgroups. Then s; > 3, s3 > 4, and
s5 > 6. This gives us 3 elements of order 2, 8 elements of order 3, and 25 elements
of order 5 for a total of at least 36 elements, a contradiction. O

Lemma 12. A group of order 40 is not simple.

Proof. Let G be a group of order 40. We have that 40 = 28 . 5.
Now s5/8 so s5 € {1,2,4,8}. Also s5 = 1(5) so s5 € {1,6,11,...}. This only
possibility is s5 = 1, so the 5-Sylow is normal. ([
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Lemma 13. A group of order 56 is not simple.

Proof. Let G be a group of order 56 = 23 - 7.

Now s7|8 so s7 € {1,2,4,8}. Also s7 = 1(7) so sy € {1,8,...}. Then either
s7 =1, in which case the 7-Sylow is normal, or s; = 8.

Suppose that s; = 8. Then G contains 48 elements of order 7. The other 8
elements in G must form a unique 2-Sylow, which is normal. (|

Order | Type || Order | Type | Order | Type

1 TRIV 21 pq 41 P

2 P 22 pq 42 pm
3 P 23 P 43 P

4 p? 24 3¢° 44 pq
5 P 25 p? 45 p°q
6 Pq 26 Pq 46 Pq
7 D 27 P> 47 P

8 P’ 28 p2q 48 3¢*
9 p? 29 P 49 p?
10 pq 30 | pgr (*) | 50 p°q
11 D 31 P 51 P
12 p’q 32 p° 52 p’q
13 P 33 pq 53 p
14 Dq 34 pq 54 pPm
15 Pq 35 g 95 g
16 pt 36 4q? 56 | p3q (%)
17 P 37 p 57 p
18 | p’q 38 pq 58 pq
19 P 39 P 59 p
20 p2q 40 | p3q (%) 60 SIMP
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